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A MODEL FOR RESIDENCE TIME IN CONCURRENT VARIABLE INTERVAL PERFORMANCE
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A component-functions model of choice behavior is proposed for performance on interdependent
concurrent variable-interval (VI) variable-interval schedules based on the product of two component
functions, one that enhances behavior and one that reduces behavior. The model is the solution to the
symmetrical pair of differential equations describing behavioral changes with respect to two categories
of reinforcers: enhancing and reducing, or excitatory and inhibitory. The model describes residence
time in interdependent concurrent VI VI schedules constructed from arithmetic and exponential
distributions. The model describes the data reported by Alsop and Elliffe (1988) and Elliffe and Alsop
(1996) with a variance accounted for of 87% compared to 64% accounted for by the Davison and
Hunter (1976) model and 42% by Herrnstein’s (1970) hyperbola. The model can explain matching,
undermatching, and overmatching in the same subject under different procedures and has the
potential to be extended to performance on concurrent schedules with more than two alternatives,
multiple schedules, and single schedules. Thus, it can be considered as an alternative to Herrnstein’s
quantitative law of effect.
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Herrnstein (1970) suggested that there was
a direct proportionality between relative re-
sponse rate and relative reinforcer rate. This
general principle allowed Herrnstein to pro-
pose a hyperbolic function for the response—
reinforcer relation in single schedules, a fur-
ther model for multiple-schedule perfor-
mance, and, in particular, a further model
for performance in concurrent schedules. As
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more data became available, the generalized
matching law (Baum, 1974) replaced Herrn-
stein’s matching law as a tool for the de-
scription of the relationship between response
and reinforcer ratios. Davison and Hunter’s
(1976) generalized matching equation was
offered as a molar model for the absolute
values of behavioral measures in single and
multiple schedules. Yet there were no pub-
lished attempts to assess it, though appro-
priate concurrent variable-interval variable-
interval (conc VI VI) schedule data are avail-
able, especially a large set of data reported
by Alsop and Elliffe (1988) and Elliffe and
Alsop (1996). The goal here is to explore
molar models of choice behavior, in parti-
cular for interdependent conc VI VI schedules,
and to suggest an alternative principle and
a model of choice that can also be applied to
single-schedule and multiple-schedule perfor-
mances.

The Matching Law

The equality between relative frequency of
responding and relative frequency of rein-
forcement obtained in concurrent VI VI
procedures was called the matching law
(Herrnstein, 1961). The related general prin-
ciple (and a molar model) of behavior stated
that the absolute rate of responding on an
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alternative in a choice procedure is propor-
tional to its associated relative reinforcer rate
(Herrnstein, 1970):

kR

i (1)
> R
i=0

In Equation 1, B is the absolute rate of
responding (responses per min), R is the
absolute rate of reinforcement (reinforcers
per min), kis a constant, and ¢ is an index that
covers all alternative responses. Matching takes
place over any set of alternative responses for
which k and X'R; are fixed (Herrnstein, 1970).
The constancy of k represents ‘‘the total
amount of behavior generated by all the rein-
forcements operating on the subject at a given
time”’ (Herrnstein, 1974, p. 161), that is,

k= iBi.
i=0

Consequently, for single schedules of re-
inforcement, the response-reinforcer rate
function is a hyperbola, where k and R, are
constants, with R, the unknown aggregate
reinforcer for other responses:

B=kR/(R+ Ry). (3)

For concurrent schedules, the total rate of
reinforcement (the denominator in Equation
1) is the same for each alternative, so the
matching relation between relative response
rates and relative reinforcer rates is expressed
as:

B, =

(2)

By =kR, /(R + Re + Ry); (4)

thus
By /(Bi+ By)=Ri /(R + Rp), (5)

where subscripts 1 and 2 denote the first and
the second alternatives. Equation 4 also
describes a contrast effect—an increase in
response rate in one component when the
reinforcer rate in the other component is
decreased.

The equation for multiple-schedule perfor-
mance (Herrnstein, 1970) required the in-
troduction of a new constant m:

Bi=kRy /(R +m Ry + Ry). (6)

Herrnstein assumed that the value of m
depended on the degree of interaction be-
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tween components; for concurrent sche-
dules it is 1 (maximal interaction), but for
multiple schedules the interaction is weaker
and m is less than 1. Equation 6 also pre-
dicts, at least ordinally, the contrast effect
observed in concurrent and multiple sched-
ules (Herrnstein, 1970; Reynolds, 1963; Wil-
liams, 1983).

Generalized Matching

Baum (1974) showed systematic deviations
from strict matching between relative response
and relative reinforcer frequencies and pro-
posed a power function alternative, the gener-
alized matching law:

BBy (7)
By Ry’
that, in double logarithmic coordinates, is
a linear function:

By itoe( B
log(E)—a log(R2)+ log c. (8)

Deviations from strict matching are accommo-
dated by two parameters, called bias (¢)
(Baum, 1974) and sensitivity to reinforcement
(a) (Lander & Irwin, 1968; Lobb & Davison,
1975). The latter is more accurately termed
sensitivity to log reinforcer ratios (Davison &
McCarthy, 1994). A value of sensitivity less
than 1.0, called undermatching, is now con-
sidered the normative finding in choice
behavior on conc VI VI schedules (Baum,
1979; Davison & McCarthy, 1988; Taylor &
Davison, 1983; Wearden & Burgess, 1982;
Williams, 1988), though an increase in the
changeover requirement shifts performance
toward overmatching (Pliskoff & Fetterman,
1981). The use of double logarithmic coordi-
nates and a power function was demonstrated
by Baum and Rachlin (1969), Hollard and
Davison (1971), Lander and Irwin (1968),
Staddon, (1968), and White and Davison
(1973).

The generalized matching law fitted the
data very well, though more recent findings
have suggested that the sensitivity parameter is
not invariant under different overall reinforcer
rates. Using arithmetic VI schedules, Alsop
and Elliffe (1988), Fantino, Squires, Delbruck,
and Peterson (1972), and Logue and Chavarro
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(1987) reported that sensitivity increased with
increases in overall reinforcer rates. Elliffe and
Alsop (1996), using exponential schedules,
reported a similar increase in sensitivity
with increases in overall reinforcer rates
followed by a decrease at high overall re-
inforcer rates. Also, both undermatching and
overmatching were found in the same subject’s
performance when overall reinforcer rates
were varied.

Numerous approaches have been developed
to explain matching or generalized matching
by reference to other basic principles of
behavior (see Baum & Aparicio, 1999; Davison
& Baum, 2000; Davison & McCarthy, 1988;
MacDonall, 1999, 2000; Nevin, 1984; Shimp,
1966, 1969; Williams, 1988), but I concentrate
here on molar models for the absolute (as
distinguished from relative, or ratio) values
of behavioral measures. Thus I omit, for
example, the generalized matching law
per se (Equations 7 and 8), the momentum
approach of Nevin and his associates
(Nevin, 1974; Nevin, Mandell & Atak, 1983;
Nevin & Grace, 2000) and the “‘pressure’
model for matching and contrast suggested
by Staddon (1983). The justification is that
an accurate model for absolute values of
behavioral measures should accurately pre-
dict ratio values, whereas the reverse is not
possible.

Existing Molar Models for the Absolute Values of
Behavioral Parameters

Baum (1974, 1979) pointed out that Equa-
tion 7 is related to Stevens’s (1957) psycho-
physical law:

S=dl", (9)
where ¢ and « are constants, sensation (S) is
the analog of response rate, and the stimulus
intensity (/) is the analog of reinforcer rate. If
response rate for each alternative is a power
function, then the ratio of response rates is
Equation 8 with log ¢ = 0. (Note also that the
constant ¢ has different meanings in Equations
9 and 8.) Yet, as pointed out by Herrnstein
(1970), no power law (which is an infinitely
rising function) can accommodate response-
rate data from single-key procedures.

Davison and Hunter (1976) suggested
a range of other molar models, called gener-
alized matching equations, that include abso-
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lute response rate and transform into an
unbiased form of Equation 7:

By, (10)

h=Fsx

or, alternatively,
Ry
YR

where k" and a are constants, k' is an analog to
Herrnstein’s k, and « is an analog to the
generalized matching sensitivity parameter.
(Ry—the aggregated other reinforcer rate—is
included in the reinforcer sum in the de-
nominator.)

McDowell (1986) suggested a ‘‘weak form”
of matching for performance in concurrent
schedules, with each pair of reinforcers having
its own sensitivity and bias, thus using 8
degrees of freedom for a two-alternative
concurrent schedule model that includes
extraneous reinforcer rate:

1(&)a10+1<l{2)a12+1 -1
bio \ R bie \ Ry (12)

and

1 Re a20 Rl al2 -
B e 1
b2 (RQ) e Ry "

where the parameters @ and b are sensitivities
and biases for the generalized matching law
between pairwise combinations of the three
alternatives (the first, second, and zero, or
aggregated other reinforcers).

Furthermore, Killeen (1982) suggested a mo-
lar application of his incentive theory for
response rates in concurrent schedules, but it
is not considered here.

The goal of the present paper is to iden-
tify a principle and to develop a model for
choice behavior that is applicable to conc VI
VI schedule performance, that is, a model
that accurately describes residence time
data, and allows for matching, overmatch-
ing, and undermatching in the performance
of the same subject. For the purposes of
assessing the models that will be considered,
I used the extensive data reported by Alsop
and Elliffe (1988) and Elliffe and Alsop
(1996).

B =k (11)

B =F

B=k . (13)
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ACCURACY OF EXISTING MOLAR MODELS
The Experimental Data and Procedure

There are two types of conc VI VI schedules:
arithmetic and exponential. These differ in
the progression used to generate the intervals
comprising the VI schedule. A typical arithme-
tic VI schedule comprises a series of discrete
intervals that are randomized from the first n
terms of the progression x, 3x, bx, 7x, ... ,
where x = mean interval/n. The probability of
arranging the next reinforcer under arithme-
tic schedules increases with time and reaches 1
at the maximum scheduled time interval. A
typical exponential VI schedule interrogates
a probability generator every 1 s and arranges
a reinforcer with probability = 1/mean in-
terval. Under exponential schedules, the prob-
ability of arranging the next reinforcer is
constant over time, and the time between
pairs of reinforcers can theoretically be in-
finite.

Concurrent schedules also can be arranged
in two different ways with regard to their
interaction. With independent scheduling,
arranging a reinforcer for one response does
not affect the availability of a reinforcer for
another response. In interdependent concur-
rent schedules (Stubbs & Pliskoff, 1969), when
one schedule arranges a reinforcer, the other
schedule(s) stop timing until that reinforcer is
collected. The data from the series of in-
terdependent concurrent arithmetic (Alsop &
Elliffe, 1988) and exponential VI schedules
(Elliffe & Alsop, 1996) mentioned above were
obtained using the same 6 pigeons and
provide the basis for the assessment of existing
models and of the new model proposed here.
Pigeons were exposed to a broad range of
overall and relative reinforcer rates. Pro-
grammed overall reinforcer rates for the
arithmetic schedules were 0.22, 0.44, 1, 2, 5,
and 10 reinforcers per min, and for the
exponential schedules they were 0.25, 0.50, 1,
2, 5, and 10 reinforcers per min. Five or six
different relative reinforcer rates were ar-
ranged at each overall reinforcer rate, usually
with values of 0.1, 0.2, 0.5, 0.8, and 0.9. The
changeover delay was 2 s. For the purpose of
modeling, the data from each pigeon and each
type of VI schedule (arithmetic or exponen-
tial) were used, forming 12 data sets. Thus, 12
fits (6 pigeons X 2 schedule types) were
calculated to describe the effect of various
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reinforcer rates on residence time for each
molar model that was assessed. Residence time
is the uninterrupted time spent responding on
each key, measured from the first response on
a key until the next response on the other key.
It excludes the time occupied by reinforcer
delivery. Residence times were calculated from
total time spent responding on each key
divided by half of the total changeovers over
the last five sessions in each condition for each
subject (see Appendices of Alsop & Elliffe,
1988; Elliffe & Alsop, 1996).

Model Selection and Statistics

The model parameters were optimized to
obtain the minimum sum of squared devia-
tions of the estimated data values from the
actual data values using the Corel QuatroPro8
optimizer. The best fits were obtained by
optimizing log residence times rather than
residence times per se, thus decreasing the
influence of extreme values of residence times
on the fits. The differences between parameter
values for the arithmetic and exponential
models were analyzed using a paired two-tailed
t-test.

Because the models assessed here have
different numbers of adjustable parameters,
it is not enough to calculate variance ac-
counted for (VAC) in order to select a better
model. Two approaches are used here that
include terms that penalize additional degrees
of freedom found in models: the Akaike
information criterion (AIC) and the Bayesian
information criterion (BIC), with BIC being
the more conservative criterion (i.e., providing
a larger penalty for the range of sample sizes
and the number of adjustable parameters that
are used). AIC is recommended in preference
to BIC for biological modeling (Burnham &
Anderson, 1998). In what follows, both were
used to demonstrate the robustness of the
conclusions.

When the sample size is small (i.e., the value
of the ratio n/K is less than 40), the second-
order Akaike information criterion is recom-
mended (Burnham & Anderson, 1998):

RSS

n—K—1
where AICc¢ is the second-order Akaike in-
formation criterion in units of information, n
is number of data points used, Kis number of
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adjustable parameters in a model plus 1, and
RSSis the residual sum of squares for the fitted
model. Better models have smaller values of
AICc, which describes the information lost in
replacing actual results with the model’s
results. The last term in the expression is the
“penalty” term, and it increases as the
number of adjustable parameters increases.
The Bayesian information criterion for
a data set differs by the penalty term and is
calculated as:
BIC=n- log”? + Klog, (n). (15)
When AICc and BIC are calculated for a series
of data sets (i.e., 12 fits for the models
considered here), the information criteria
are calculated by Equations 16 and 17 (B.
McArdle, personal communication, 2005):

N
RSS
AlCc= g (ni-loge >
n;

i=1

"y
+2sz<m) and

(16)

v
BIC=Y" (n log, RSS) +KNlog, (n),  (17)
- n;

i=1

where N is number of data sets (N = 12), i is
index of a dataset 1, 2, ... N, and n, is the total
number of data points used in the set (i.e., in
all N datasets).

Values of AICc and BIC by themselves have
no meaning for a given data set, as they
depend on the dimension of RSS, that is, the
residence time measured in seconds will pro-
duce an RSSvalue 3600 (60%) times larger than
if it is expressed in minutes. Thus, models were
compared using AICc and BIC differences that
do not depend on the dimension of RSS:

A; = AIC¢; — AlCcy;, and (18)

A; = BIC; — BICy;n, (19)
where AICc¢; and BIC; are the Akaike and
Bayesian criteria for the i"™ model, and AlCc,,;,
and BIC,,;, are Akaike and Bayesian criteria for
the best model (or the minimum AICc and
BIC value). The level of support for a model
depends on the value of 4, The relative
likelihood (RL;), which is the probability that
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a particular /" model is a better model than
the model with the minimum value of an
information criterion, is given by:
RL;=exp(— %A,»). (20)
The information criteria must be calculated
using the same data set for each model. After
testing, the models are ranked in order of
increasing values of AICc and BIC, and the set
of models within a cutoff value of AICc and
BIC differences from the best model is
considered as a confidence set of models,
each of them having some chance to be the
true best model. A cutoff value of 4; = 6 is
recommended, as it provides a relative likeli-
hood value of less than 0.05 (as exp(—6/2) =
.0498). A cutoff difference of 10 or more
means that there is virtually no support for
a model being a better model than the model
with the minimum value of the information
criterion (Burnham & Anderson, 1998).

Models of Residence Time Based on Existing
Molar Approaches

Five residence-time models for the data of
Alsop and Elliffe (1988) and Elliffe and Alsop
(1996) were derived using Stevens’ law (Ste-
vens, 1957), Herrnstein’s hyperbola (Herrn-
stein, 1970), two models developed by Davison
and Hunter (1976), and one developed by
McDowell (1986). The equations for all five
residence-time models are given in the Ap-
pendix A (Equations Al to A10), but some are
also presented here.

Values of the AICc and BIC, and the means
of the VAC of the 12 fits (6 pigeons X 2
schedules) for each model are presented in
Table 1. Both information criteria (AICc and
BIC) were smallest for the Davison and Hunter

(1976) Model 2 (Equations 21 and 22):

Ty =K(0R)" /(bR + RS+ Rf] and  (21)

To=KRS/IBR) + RE+ R, (22)
where 77 and Ty are residence times on the
first and second alternatives, R, Ro, and Ry are
obtained reinforcer rates on the first, second,
and aggregated other alternatives, k' is an
analog to ‘“‘the total amount of behavior,” «a is
an analog to the generalized matching sensi-
tivity parameter, and bis a reinforcer bias. The
difference from the next best model (Davison
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Table 1

Accuracy of five models of residence time (see Appendix A, Equations Al to A10) measured in
terms of the second-order Akaike information criterion (AICc, Equation 16) and Bayesian
information criterion (BIC, Equation 17) and as the percentage of variance accounted for
(VAC). df is the number of adjustable parameters in a model, 4; is difference of a model
information criterion from the best model (Equations 18 and 19). Models are ordered by the
value of AICc and ranked separately by values of the AICc and BIC, with the best model ranked 1.
SEM is the standard error, and VAC are averages for the 12 fits (6 pigeons X 2 schedule types)
performed on the data of Alsop and Elliffe (1988) and Elliffe and Alsop (1996).

AlCc BIC VAC
Model af Value A; Rank Value A; Rank Mean SEM
Davison-Hunter 2 4 —2429 0 1 —2216 0 1 64 2
Davison-Hunter 1 4 —2348 81 2 —2135 81 2 60 2
McDowell 8 —2309 120 3 —1898 318 4 64 2
Herrnstein 3 —-2107 322 4 —1946 270 3 42 4
Stevens 3 —-1772 657 5 —1611 605 5 12 2

& Hunter Model 1) was 81 for both AICc and
BIC (see Table 1), and the relative likelihood
calculated by Equation 20, indicating that the
Davison and Hunter Model 1 is the better
model than the Davison and Hunter Model 2,
was 2x10718, Thus, a comparison of the
models suggests that the Davison and Hunter
Model 2 is the best of the molar models that
were tested, although its mean VAC (64%) was
not large. The AICc and BIC differences of the
Davison and Hunter Model 2 from Herrn-
stein’s (1970) hyperbola-based model:

where k is the ‘‘total amount of behavior”,
were even greater. The mean VAC for Herrn-
stein’s hyperbola was only 42% on average (see
Table 1).

The average parameter values of the Davison
and Hunter (1976) Model 2 and Herrnstein’s
(1970) hyperbola for arithmetic and exponen-
tial schedules are presented in Table 2, with
parameter values detailed for each pigeon and
each model included in Appendix A (Ta-
ble Al). For both models, the parameters
related to ‘‘total amount of behavior (k and
k') were almost twice as large for the expo-

Ty = kbR, (bR + Ry + Ro) and (23) nential schedule (p < .001 in both cases). The

sensitivity parameter (a) of the Davison and

Ty =kRy /(bR + Ro + Ry), (24)  Hunter Model 2 for exponential schedules
Table 2

Mean parameter values of Herrnstein’s (1970) hyperbola (Appendix A, Equations A3 and A4)
and the Davison and Hunter (1976) Model 2 (Equations 21 and 22). There are six fits of the
models for arithmetic and exponential schedules, with 58 to 64 data points in each fit. k and &’
are ‘‘the total amount of behavior,”” R, is the aggregated other reinforcer rate, a is an analog to
the generalized matching sensitivity parameter, and b is a reinforcer bias. VAC is percentage of

variance accounted for.

Herrnstein’s hyperbolic model

Davison & Hunter Model 2

Model parameters

Model parameters

k R, log b VAC K R, a log b VAC
Arithmetic schedule (Alsop & Elliffe, 1988)
Mean + SEM 27.3 0 —0.04 32 23.2 0 0.61 —0.07 60
2.1 0 0.02 4 2.0 0 0.03 0.02 2
Exponential schedule (Elliffe & Alsop, 1996)
Mean + SEM 46.77 0 —0.04 52 40.8™ 0 0.69" —0.07 68
4.6 0 0.02 5 4.3 0 0.03 0.05 3

* p < .05 for the comparison of means by 2-tailed paired ttest; ™ p < .001.
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was also significantly (p < .05) larger than
that for arithmetic schedules (Table 2). An
interesting feature of both models, as well as
all others containing R,, was that, if this
parameter was not constrained to be equal to
or greater than 0, the value of R, was negative
in all 12 fits of each model (see Appendix A,
Table Al).

THE COMPONENT-FUNCTIONS MODEL
FOR RESIDENCE TIME

The General Principle of Choice Behavior and the
New Model for Residence Time

Herrnstein’s (1970) model and the associ-
ated models described above are based on the
matching (or the generalized matching) prin-
ciple, which can be formulated as the distri-
bution of a hypothetical entity—the total
amount of behavior (Herrnstein, 1974)—
according to some function of the fraction of
total reinforcers allocated to a particular be-
havior.

Despite the apparent feasibility of behavior
allocation according to relative reinforcers, the
matching principle implies an inherent asym-
metry in its treatment of different kinds of
reinforcers, which are usually assigned to two
categories. The first category consists of re-
inforcers produced by a particular response
(or that the subject associates as such). The
second category contains reinforcers from
other sources (Catania, 1973). On Herrn-
stein’s (1970) view, for example, these would
be reinforcers available at the current alterna-
tive and reinforcers available at the other
alternatives, including aggregated other re-
inforcers, respectively. According to the
matching principle, both categories of rein-
forcers (which appear in the denominator of
Herrnstein’s hyperbola) have an inhibitory
effect on responding, whereas the first catego-
ry of reinforcers also exerts an excitatory
effect.

As an alternative to this asymmetrical view, I
hypothesized that each category of reinforcers
(reinforcers produced by a response, and all
other reinforcers) operates via its own in-
dependent function, which I term a component
function. The combination of two such in-
dependent functions controls behavior. We
term the function for the first category of
reinforcers an enhancing-component function
and the function for the second category
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of reinforcers a reducing-component function.
Accordingly, the first category of reinforcers
may be referred to as enhancing reinforcers,
and the second category of reinforcers as
reducing reinforcers, meaning that they en-
hance and reduce a particular behavior, re-
spectively. The enhancing-component func-
tion is an increasing function, and the re-
ducing-component function is a decreasing
function. I hypothesized further that, if the
quantity of one of the reinforcers changes, the
resulting change in behavior occurs in pro-
portion to the change of its component
function, and also in proportion to the other
component function. (Here the mathematical
synonym for ‘“‘change’ is the first derivative.)
In accordance with this principle, a new
behavioral steady state will be reached. The
new state will be adaptive by virtue of the
fact that it is adaptive to increase behavior if
the rate of enhancing reinforcers has in-
creased, and it is adaptive to decrease behavior
if the rate of reducing reinforcers has in-
creased.

The principle described above is mathemat-
ically a product of the component functions
plus a constant:

T:Fenh'Fred+ Ta~ (25)
where 7T is the resulting behavioral function,
that is, residence time, F,,, and F,,; are the
enhancing- and reducing-component func-
tions of enhancing and reducing reinforcers,
respectively, and 7T, is a constant.

Alternatively the principle can be expressed
as a system of two partial differential equa-
tions:

oT dF,,,
=—F,; and 26
Rt Ry, ™ (26)
aT dFred
R .F
aRfred dRred el (27)

where R,,, and R,,; are enhancing and re-
ducing reinforcer rates; 07/0R,,;, and 0T/0R,,,
are partial derivatives (or changes) in 7 with
a change in R,,;, only and R,,; only, respective-
ly; dF,.n/dR,,;, and dF,,./dR,, are full deriva-
tives (changes) of component functions with
a change in their respective reinforcers. The
solution of this system is Equation 25, and
Equations 26 and 27 warrant the appearance
of T, in Equation 25.
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Fig. 1. A hypothetical model of behavior. Upper-left panel: The enhancing-component function (f,,,) of enhancing
reinforcer rate (R,,;). Upperright panel: The reducing-component function (£,,,) of reducing reinforcer rate (R,,;) with
initial value = 1. Lower-left panel: Predicted residence time (7). Lowerright panel: generalized matching sensitivity
values predicted from the model if calculated as a function of overall reinforcer rate with ratio R,,;,: R, = 1:5and 5: 1
for each overall reinforcer rate that is, for 7} the ratio R,,;,: R,s = R;: R> (= 1:5); while for T, the ratio R,,;,: R,qu = Ro:

R, (=5:1).

A hypothetical example of the prediction of
residence time in two-alternative concurrent
schedules using Equation 25 is shown in
Figure 1. The enhancing-component function
is an increasing function of the enhancing
reinforcer rate (upper-left panel), and the
reducing-component function is a decreasing
function of the reducing reinforcer rate
(upper-right panel). The value of the reduc-
ing-component function is chosen to be 1
when the reducing reinforcer rate equals 0,
thus the decreasing-component function does
not affect the resulting behavior in the
absence of reducing reinforcers. The resulting
behavior is displayed as a 3-D surface (lower-
left panel). For residence time on the first
alternative (77), the enhancing reinforcer rate
is identified with R; and the reducing re-
inforcer rate with R, in Equation 28 below. For

residence time on the second alternative (75),
the enhancing reinforcer rate is identified with
Ry and the reducing reinforcer rate with R;
(Equation 29):

Ty :Fenh(Rl)'Fred(RQ) + T, and (28)

Ty :Fenh(RQ)'Fred(Rl) + To. (29)

Equations 28 and 29 are the general form of
the model for residence time in two-alternative
concurrent schedules. It is easy to see why this
model will not produce constant values of the
generalized matching sensitivity parameter
with different overall reinforcer rates. As both
enhancing and reducing reinforcer rates in-
crease with increasing overall reinforcer rates,
the resulting 3-D surface changes and corre-
sponding values of sensitivity also change
(lower-right panel).
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The Selection of the Component-Functions Model of
Residence Time for conc VI VI Schedules

I assessed 35 molar models of residence time
by the values of AICc and BIC. Each model was
a product of enhancing- and reducing-compo-
nent functions plus a constant 7, (Equation
25, or Equations 28 and 29). The models were
constructed from all possible combinations of
seven enhancing-component functions and
five reducing-component functions, giving 35
combinations in total (see Appendix B for the
equations of the functions). Reinforcer rate
for the first alternative was scaled with a re-
inforcer rate bias b (bR;), while reinforcer rate
for the second alternative remained intact
(Ro). As in the hypothetical example above,
the reinforcer rate on the selected alternative
was identified with the enhancing reinforcer
rate, and the reinforcer rate on the other
alternative was identified with the reducing
reinforcer rate.

Equations for the component functions were
chosen from the equations typically used for
single schedules of reinforcement. The set of
enhancing-component functions (see Appen-
dix B, Equations Bl to B7) consisted of power
functions with two or three adjustable param-
eters (df, degree of freedom) as in Stevens’s
(1957) law; hyperbolic functions with df = 2
and df = 3 as in Herrnstein’s (1970) model;
bounded exponential functions with df = 2 and
df = 3 and a logistic exponential function with
df =3 as in Hull’s models (Hull, 1943, 1951,
1952; Spence, 1942). All enhancing-component
functions are increasing functions with initial
values (i.e., the values when the reinforcer rate
is zero). All, except power functions, are
bounded functions (i.e., they have limiting
values when the reinforcer rate is infinity).
The power functions were included in the list
as they rise to infinity which absolute residence
time can also do. Logarithmic functions were
excluded to avoid problems with negative
values for arguments smaller than 1.

The set of five reducing-component func-
tions (see Appendix B, Equations B8 to B12)
consisted of hyperbolic functions with df = 2
and df = 1, exponential functions with df = 2
and df = 1, and a logistic function with df = 2.
The functions were derived from the respec-
tive enhancing-component functions. The in-
creasing exponential, hyperbolic, or logistic
functions have their initial values smaller than
the limiting values. To transform an exponen-
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tial, hyperbolic, or logistic function into a de-
creasing one, it is enough to choose the initial
values of a function to be greater than their
limiting values. Additionally, the initial values
for the reducing-component functions were
set to 1, so the reducing-component function
would not affect the value of residence time in
the absence of the reducing reinforcers.

The number of adjustable parameters in the
set of 35 models ranged from 5 to 7 degrees of
freedom, where 2 degrees of freedom were
provided by the reinforcer bias band residence
time constant 7,

Values of the AICc and BIC, and the means
of the variance accounted for (VAC) of the 12
fits (6 pigeons X 2 schedules) for the three
best and three worst models ordered by AICc
values are presented in Table 3 (see the
complete set of 35 models in Appendix B,
Table B1). All models in the set of 35
component-functions models were better
models than the Davison and Hunter (1976)
Model 2 (compare Tables 1 and 3). The
difference between values of AICc and BIC
for the Davison and Hunter Model 2 were 143
and 67, respectively — well above the critical
value of 4, = 6. The VAC for the worst model
was 71% against 64% for the Davison and
Hunter Model 2.

Both the AICc and BIC information criteria
were smallest for the model with the power
function (df = 3) as the enhancing-compo-
nent function and with the hyperbolic func-
tion (df = 1) as the reducing-component
function. I will refer to this function as the
best componentfunction model. The df for
the best model was 6. The AICc and BIC
differences from the next best model were
significant (4; = 16) with relative likelihood
RL; = .0004 (Equation 20) that the model
ranked second was better than the model
ranked first. The best model had a mean value
of VAC = 87% against 64% for the Davison
and Hunter (1976) Model 2.

The complete formulation of the best
component-functions model is:

Tl = [Fenh() +A(le)kmh]-[l —RQ/(l/k'red +R2)}(3
+ T, and

0)

To=[Fouo + ARy [1— bRy /(1 ko + bRy)]
+ 1,

(31)
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Table 3

Accuracy of the three best and three worst componentfunctions models of residence time
(Equations 28 and 29) from all possible combinations of seven enhancing-component functions
(see Appendix B, Equations Bl to B7) and five reducing-component functions (see Appendix B,
Equations B8 to B12). Power, Hyp, Exp, and Log are power, hyperbolic, exponential, and logistic
component functions. dfin Columns 2 and 4 are for the component functions; dfin Column 5
are for the whole model. Other abbreviations are as in Appendix A, Table Al. Models are
ordered by values of AICc and ranked separately by AICc and BIC. The data are from Alsop and

Elliffe (1988) and Elliffe and Alsop (1996).

Component-functions AlCc BIC VAC

Enhancing df  Reducing df df  Value 4; Rank  Value 4; Rank Mean SEM
Three best component-functions models as ranked by AICc

Power 3 Hyp 1 6 —3158 0 1 —2844 0 1 87 1

Exp 3 Hyp 1 6 —3142 16 2 —2828 16 2 86 1

Hyp 3 Hyp 1 6 —3140 18 3 —2825 18 3 86 1
Three worst componentfunctions models as ranked by AICc

Hyp 2 Exp 1 5 —2599 560 33 —2334 510 30 72 2

Exp 2 Exp 2 6 —2598 561 34 —2283 561 35 72 3

Exp 2 Exp 1 5 —2573 586 35 —2308 536 34 71 3

where T; and 75 are residence time on the first
and second alternatives expressed in s, [, is
the initial value of the enhancing function in s,
A is a scaling coefficient of the enhancing-
component function, R; and Ry are obtained
reinforcer rates on the first and second
alternatives, k,,, and k., are enhancing and
reducing reinforcer constants, 7, is the resi-
dence time constant in s, and b is a reinforcer
bias. k,,; and k,,, do not have any dimension,
but require R; and R, to be expressed in
reinforcers per min for consistency.

Examples of residence-time fits for the best
componentfunctions model and for the Davi-
son and Hunter (1976) Model 2 are presented
in Figure 2. A typical 3-D surface of residence
time as a function of enhancing and reducing
reinforcer rates is shown in Figure 3, with
residence time for the arithmetic schedules
being smaller than for the exponential sched-
ules. Accuracy of generalized matching sensi-
tivity predictions was obtained from the
sensitivity values calculated for each pro-
grammed overall reinforcer rate (for both
the arithmetic and exponential schedules with
6 pigeons for each schedule). Seventy-two
values of the sensitivity parameter obtained
from the data were compared with theoretical
values of residence time. The best model
accounted for 67% of the variation in gener-
alized matching sensitivity parameter values,
whereas the Davison and Hunter Model 2
accounted for —14% (see Figure 4).

The average parameter values for the best
model are shown in Table 4, and parameter
values for each of 12 fits are given in Appendix
B (Table B2). In both arithmetic and expo-
nential groups, there was an outlier that
significantly distorted (increased) the mean
values of parameters, thus the median value is
given to provide a better representation. The
parameters k,,;, and 7T, of the exponential-
progression schedules were significantly differ-
ent from those for the arithmetic schedules
(p < .05 and < .01, respectively).

In order to assess any systematic deviation of
residence time from the model, the log resi-
dence time residuals were approximated by the
third-degree polynomial and compared with the
same analysis performed for the Davison and
Hunter (1976) Model 2. Two different poly-
nomial models were calculated: for the residuals
as a function of overall reinforcer rate and for
the residuals as a function of relative reinforcer
rate. In the case of overall reinforcer rate, each
overall rate was used twice (for the residuals of
Ty and Ty). In the case of relative reinforcer
rate, the values of R;/ (R + Ro) and Ry/ (R; + Ry)
were used for the residuals of 7T; and T,
respectively. The Davison and Hunter Model 2
had significant (p <.05) systematic deviations in
7 out of 12 overall reinforcer rate fits and in all
12 polynomials for relative residence time. For
the componentfunctions model, there were no
cases of systematic deviations. The third-degree
polynomials described on average 14% and 35%
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Fig. 2. Predictions of the componentfunctions model for interdependent conc VI VI performance (solid lines;
Equations 30 and 31) versus the Davison and Hunter (1976) Model 2 predictions (dashed lines; Equations 21 and 22).
The data are from Pigeon 132 and the exponential schedule type (Alsop & Elliffe, 1996). The parameter values are given
in Appendix A, Table Al and Appendix B, Table B2.

Fig. 3. Models of residence time for arithmetic and exponential schedules. Models included obtained reinforcer rates
from 0.1 to 5 reinforcers per min. (Equations 30 and 81; the parameter values appear in Appendix B, Table B2). The data
are from Pigeon 132 (Alsop & Elliffe, 1988; Elliffe & Alsop, 1996).
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Fig. 4. Generalized matching sensitivity parameter as predicted by two models. The solid lines represent arithmetic
schedules and the dashed lines exponential schedules. Parameter values are given in Appendix A, Table Al and
Appendix B, Table B2. Empirical data sensitivities were calculated for each programmed reinforcer rate from residence-
time data. The data are from Alsop and Elliffe (1988) and Elliffe and Alsop (1996).

of the variation of residuals in Davison and
Hunter Model 2 (overall and relative reinforcer
rate polynomials, respectively), whereas for the
componentfunctions model the same values
were 4% and 2%, respectively.

DISCUSSION

All component-functions models in the set
of 35 that were tested proved to be superior to

existing molar models of choice in interde-
pendent conc VI VI schedules and, in partic-
ular, to the model proposed by Davison and
Hunter (1976), according to both Akaike and
Bayesian information criteria. The compo-
nentfunctions model of choice behavior
(Equations 30 and 31), with only 6 degrees
of freedom, successfully described the results
of Alsop and Elliffe’s (1988) and Elliffe and
Alsop’s (1996) experiments with VAC = 87%
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Table 4
Parameter values for the best component-functions model (Equations 30 and 31). There are six
fits of the models for arithmetic and exponential schedules with 58 to 64 data points in each fit.
F,0 and A are initial and scaling values of the enhancing function, k,,, and k,,, are enhancing
and reducing reinforcer constants, 7, is the residence time constant, and 4 is a reinforcer bias.
VAC is percentage of variance accounted for.
Model parameters
Fonno A Ryea Koni, 1, log b VAC
Arithmetic schedule (Alsop & Elliffe, 1988)
Mean *= SEM Median 21505 158145 117953 1.143 4.18 —0.08 84
21452 157982 117865 0.161 0.32 0.02 1
49 134 57 1.114 4.12 —0.08 84
Exponential schedule (Elliffe & Alsop, 1996)
Mean * SEM Median 23 1732 375 0.861* 6.44" -0.11 90
11 1445 329 0.089 0.31 0.06 1
12 305 51 0.823 6.12 —0.10 90

* p < .05 for the comparison of means by 2-tailed paired ttest; " p < .01.

against VAC = 64% for the Davison and
Hunter Model 2 and VAC = 42% for
Herrnstein’s (1970) hyperbola (Table 2 and
4). Although accurate fitting of data alone is
not important per se, failure to fit data
accurately by a competing model may be
considered to disqualify whatever apparently
advantageous theoretical justification the com-
peting model has.

The componentfunctions model predicted
changes in residence time over a wide range of
programmed overall reinforcer rates (0.22 to
10 reinforcers per min). By virtue of accurately
describing residence times, it also described
changes in the generalized matching sensitiv-
ity parameter and can describe undermatch-
ing, matching, and overmatching as part of the
3-D depiction of the performance of each
subject.

Behavioral contrast is an increase in resi-
dence time or response rate on a constant
reinforcer-rate alternative with decreases in
the reinforcer rate on the other alternative
and is a feature of conc VI VI schedule
performance (Catania, 1963) and multiple-
schedule performance (Reynolds, 1961). The
componentfunctions model can predict be-
havioral contrast as well (see Figure 5).

The model’s parameters can be preliminar-
ily interpreted as follows: F,,;,, and 7, are
related to baseline performance (i.e., behav-
ioral activity in the absence of reinforcers); &,
and k,,, are analogies for the sensitivities to the
enhancing and reducing reinforcer rates; and
A is a scaling factor for the enhancing-

component function and is to be viewed in
conjunction with k,,;,. To what degree the
parameter values are environment-, schedule-,
or subjectrelated is difficult to establish at this
point. Additional research will be required.

It seems, however, that the parameter values
for the models may not necessarily remain the
same across different types of schedules. There
were statistically significant differences be-
tween the parameter values (k,,;, and T,) of
the componentfunctions models for perfor-
mance in arithmetic and exponential sched-
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Fig. 5. Behavioral contrast (changes in 7; as a function
of Ry) predicted by the component-functions model for
interdependent conc VI VI schedules. The obtained
reinforcer rate on the first alternative was two reinforcers
per min throughout. Pigeon 133’s parameter values are
given in Appendix B, Table B2 (Alsop & Elliffe, 1988—
arithmetic schedules).
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ules (see Table 4). The smaller values of T,
for arithmetic schedules probably are related
to the fact that residence time for exponential
schedules typically is larger than for arithmetic
schedules. Alsop and Elliffe, (1988) and Elliffe
and Alsop (1996) reported that changeover
rates in exponential schedules were approxi-
mately twice those found in arithmetic sched-
ules. The same argument relates to the almost
twice larger values of k in Herrnstein’s (1970)
model and in k' in Davison and Hunter’s
(1976) Model 2 for performance in exponen-
tial schedules compared to performance in
arithmetic schedules (Table 2). The variability
in kvalues is well supported (see e.g., Williams,
1988). It seems that the change to a different
schedule progression may result in a change in
the parameters of the model. It is conceivable
that the type of component functions also may
change, with only the componentfunctions-
plus-constant structure of the model being
invariant (Nevin, 1984).

The model described above was derived
from the following starting point: I was looking
for a symmetrical way to represent two
categories of reinforcers—reinforcers that
enhance behavior and those that reduce it
(these were termed enhancers and reducers). 1
used a set of simultaneous partial differential
equations (Equations 26 and 27). The solution
has the general form of the product of two
independent component functions plus a con-
stant (see Equations 25 and 32).

B :Fenh(Renh)'Fred(R'md) + B, (32)
where B is a behavioral variable, B, is the
constant, and F,,, and F,,; are enhancing- and
reducing-component functions responsible for
increasing and reducing behavior, respectively;
R,,;, and R,, are enhancing- and reducing-
reinforcer rates. According to these differen-
tial equations and their solution (Equation 25
and 32), if the quantity of one of the re-
inforcers (enhancers or reducers) changes,
the resulting behavior will change in pro-
portion to the change of its component
function and in proportion to the other
component function. For behavioral variables
like residence time or response rate, the
enhancing-component function is an increas-
ing function, and the reducing function is
a decreasing one. However, we can imagine
a situation where the reverse will be the case,
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for example, in measures of latency. It is worth
mentioning that enhancers and reducers may
belong to the same category of what might be
termed rewarding reinforcers if they act alone.
Yet, when presented to a subject simultaneous-
ly in a conc VI VI schedule or a multiple
schedule, they acquire the opposing character-
istics of enhancers and reducers, driving
response competition.

This approach does not assume the maxi-
mization or optimization of total reinforcer
rate as a primary process (c.f. Houston &
McNamara, 1981; Rachlin, 1978, 1982; Rachlin
& Burkhard, 1978; Rachlin, Green, Kagel, &
Battalio, 1976; Staddon & Motheral, 1978,
1979). In agreement with Prelec (1982) and
Davison (1990), in concurrent VI VI schedules
the maximization of total obtained reinforcer
rate is hard to achieve, since total reinforcer
rate changes to a very small degree with
changes in relative reinforcer rate. At the same
time, the reinforcer rates on alternatives (and
consequently, enhancing and reducing rein-
forcer rates) change dramatically, and so are
able to serve as inputs for changes in choice
behavior in a law-of-effect type of model. The
behavior assumed by the component-functions
model is relatively adaptive, inasmuch as it is
adaptive for response rate (or residence time)
to increase monotonically with an increase in
the enhancing reinforcer rate and to decrease
monotonically with an increase in the re-
ducing reinforcer rate.

The notion of two tendencies affecting
behavior is not new. It can be traced to
Pavlovian excitation and inhibition (Pavlov,
1928). Herrnstein’s (1970) notion of extrane-
ous reinforcers was intended to play a similar
role to that of the reducing reinforcers in the
componentfunctions model. An analogous
approach can be seen in the stay- and shift-
reinforcers discussed by MacDonall (1999,
2000). Strong parallels to this approach can
be found in Staddon’s (1977, 1978) modeling
of response competition with a postulated
ceiling on response rate and an inhibitory
effect of the competing responses. A further
similarity in approach is that adopted by
Dragoi and Staddon (1999) in their acquisi-
tion-extinction theory. A multiplicative-com-
ponents-plus-constant structure was used by
Hull (e.g., Equation 35, Hull, 1943, p. 255) to
describe the interaction of habit and drive
strengths.
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The initial value of the reducing function
was set to 1 so that, when there are no other
reinforcers, the model for two component
functions reduces to a model for single-
schedule responding:

It may be reasonable to ask why an alternative
to Herrnstein’s (1970) hyperbola (Equation 3)
would be proposed for single-schedule perfor-
mance. Yet, (a) as already stated, the type of
component function can depend on schedule
type; (b) Herrnstein’s hyperbola for single-
schedule performance has not been compared
directly with possible alternatives, because the
hyperbola was developed as a reduction of the
matching model (Equation 1); and (c) the
performance of Equation 1 for conc VI VI
schedules was inferior to practically all models,
except the Stevens’s (1957) law-based model.

The componentfunctions model also ex-
tends to multiple-schedule performance, fol-
lowing the example of Herrnstein (1970), and
predicts behavioral contrast (see Figure 5). It
does not require the introduction of a special
parameter (Herrnstein’s m) to weaken the
interaction of the participating schedules.
Further studies need to be conducted to assess
the implication of behavioral momentum
effects (Nevin, 1974; Nevin & Grace, 2000;
Nevin, Mandell & Atak, 1983) and to assess the
componentfunctions model for multiple-
schedule performance.

There are no major difficulties in extending
the model to choice behavior in concurrent
schedules with more than two alternatives, for
example, a conc VI VI VI schedule (Equations
34 to 36):

Bl :th(Rl)'Fred(RQ + Rﬁ) + Baa (84)
B2 :Fenh(RQ)'Fred(Rl + R3) + B, (35)
B?) :Fenh(R"S)'Fred(Rl + R?) + Baa (36)

where By, By, and Bs are response rates on the
first, second, and third alternative of a conc VI
VI VI schedule, and R;, Ry, and R; are
reinforcer rates on the first, second, and third
alternative. The reinforcer rate on the selected
alternative is identified with the enhancing
reinforcer rate, and the sum of reinforcer rates
on the other alternatives is identified with the
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reducing reinforcer rate. Under other circum-
stances, an additional parameter—aggregated
other reinforcers, R.—can be added, most
likely to the reducing reinforcer rate for the
model for a three-alternative concurrent VI VI
VI schedule, as well as for the model for a two-
alternative conc VI VI schedule. If a general-
ized matching analysis is performed for a pair
of alternatives in such a three-alternative conc
VI VI VI schedule, we may expect that a variety
of changes in the sensitivity parameter could
occur. If, for example, the reinforcer rate on
the third alternative is increased, there may be
a tendency for the generalized matching
sensitivity parameter value for B, versus By to
decrease. The behavior on Alternatives 1 and
2 in Equations 34 and 35 will be dominated
by the increasing value of Rs, affecting the
reducing-component function, so that B; and
B, will converge, and sensitivity will decrease.
There are some indications that this can be the
case (Davison & McCarthy, 1994; Murrell,
1995). However, the changes in sensitivity
can take a different shape (see Figure 4),
and there can be areas of almost linear log
behaviorratio versus log reinforcer-ratio rela-
tions (Davison & Hunter, 1976; Miller &
Loveland, 1974; Pliskoff & Brown, 1976).
Thus, the model certainly would predict
departures from the choice axiom (Luce,
1959), in full agreement with Luce’s (1977)
later position. In this way, the molar dynamical
model to account for the melioration experi-
ments (Herrnstein, 1982; Herrnstein &
Vaughan, 1980; Vaughan, 1981) or Mazur’s
(1992) experiments can be seen as similar to
Hull’s model for learning (Hull, 1943, Equa-
tion 1, p. 119; Spence, 1942).

Herrnstein’s (1970) hyperbola (Equation 3)
is viewed as a quantitative or relative law of
effect (Lattal, 1998; Nevin & Grace, 2000). The
model of choice behavior developed here has
an adaptive underlying principle based on the
symmetrical treatment of enhancers and re-
ducers. The model describes performance in
interdependent conc VI VI schedules (Alsop &
Elliffe, 1988; Elliffe & Alsop, 1996) with a degree
of accuracy higher than existing models and
can explain the existence of matching, under-
matching, and overmatching in the same sub-
ject. Potentially, it can be extended to concur-
rent schedules with more than two alternatives
and to multiple schedules and can be reduced
to performance on single-response schedules,
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just as Herrnstein’s model has been extended.
It also can be used to describe the dynamics of
behavior between stable states. Thus, it can be
considered as an alternative framework for
a quantitative law of effect.
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APPENDIX A

ASSESSMENT OF THE EXISTING MOLAR MODELS OF
REesIDENCE TIME

Set of Models of Residence Time Based on Existing
Molar Approaches

In the equations below, 77 and 75 are resi-
dence times on the first and second alter-
natives, R;, Re, and Rj are obtained reinforcer
rates on the first, second, and aggregated
other alternatives, ¢, a, k, and k' are constants,
and b is a reinforcer bias.

Stevens’s (1957) law (Equation 9)-based
model:

MICHAEL A. NAVAKATIKYAN

Davison and Hunter (1976) Model 1:

Ty =K [bRi /(bR + R+ Ry)]“ and ~ (Ab)
Ty=HK[Ry/(bRi+ Ry +Ro)l".  (A6)
Davison and Hunter Model 2:
Ty =K(bR)"/[(bR))"+ Ry + R{] and (A7)
Ty=KRy/I(bR)"+ R+ Ryl (A8)

McDowell (1986) model (adapted for resi-
dence time):

T = ¢(bRy)" and (A1) 1 R\™ 1 [R\™ -1
. n=FK {— (—) + (—2) +1}
Ty=cRy. (A2) bio \ R bie \ Ry (A9)
Herrnstein’s  (1970) hyperbola (Equation and
4)-based model:
Tl = kle /(le + Rg + }?()) and (A?)) 1 R,, a0 Rl a2 -1
To=F {— (—) + bio (—) +1} . (A10)
TQ = kRg/(le + Rg + R()) (A4) b20 R2 R?
Table Al

Parameter values for the Herrnstein (1970) hyperbola-based model (Equations 23 and 24 or
Appendix A, Equations A3 and A4) and Davison and Hunter (1976) Model 2 (Equations 21 and
22 or Appendix A, Equations A7 and A8). The number of data points in each of the 12 fits is
between 58 and 64. k and k' are ‘‘the total amount of behavior”, R, is the aggregated other
reinforcer rate, a is an analog to the generalized matching sensitivity parameter, and b is
a reinforcer bias. VAC is percentage of variance accounted for.

Herrnstein’s hyperbolic model

Davison & Hunter Model 2

Model parameters

Model parameters

k R, log b VAC K R, a log b VAC
Arithmetic schedule (Alsop & Elliffe, 1988)
Pigeon 131 35.2 0 =0.11 48 31.3 0 0.74 -0.12 55
132 24.2 0 0.00 30 20.4 0 0.59 0.02 64
133 28.5 0 —0.05 35 24.2 0 0.61 =0.11 59
134 20.1 0 —0.03 26 16.8 0 0.56 -0.07 66
135 27.0 0 —0.03 32 23.0 0 0.60 -0.07 58
136 28.6 0 —0.01 19 23.5 0 0.55 —0.09 55
Mean *= SEM 27.3 0 —0.04 32 23.2 0 0.61 -0.07 60
2.1 0 0.02 4 2.0 0 0.03 0.02 2
Exponential schedule (Elliffe & Alsop, 1996)
Pigeon 131 68.2 0 —0.04 59 61.4 0 0.79 -0.08 64
132 43.2 0 —0.01 30 35.7 0 0.59 0.03 60
133 42.4 0 =0.15 49 37.6 0 0.66 —0.28 60
134 35.0 0 -0.01 65 31.5 0 0.76 —0.03 72
135 47.3 0 —0.04 58 40.7 0 0.68 —0.05 77
136 44.1 0 0.00 53 38.0 0 0.65 0.01 76
Mean *= SEM 46.7 0 —0.04 52 40.8 0 0.69 -0.07 68
4.6 0 0.02 5 4.3 0 0.03 0.05 3
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APPENDIX B

ASSESSMENT OF THE COMPONENT-FUNCTIONS MODELS
oF RESIDENCE TIME

Set of Component-Functions Models of
Residence Time

I assessed 35 molar models of residence
time. Each model was a product of enhancing-
and reducing-component functions plus a con-
stant 7,

There were seven enhancing-component
functions and five reducing-component func-
tions, giving 35 combinations in total. In the
description of the component functions, the
following abbreviations were used: I'is a com-
ponent function; R is a reinforcer rate, and «,
¢, d, and k are constants, which are not always
consistent between equations and within equa-
tions in the body of the article. Constants ¢ and
d are the initial and limiting values of
a function (i.e., the values when respective
reinforcer rates are zero and infinity). The
component functions are presented with re-
inforcer rate in the unbiased form.

The following seven enhancing-component
functions with different numbers of adjustable
parameters (df, degree of freedom) were used:

Power functions with df = 3 (Equation Bl)
and df = 2 (Equation B2), similar to Stevens’s
(1957) law:

F=c+aR", (B1)

F=aR*. (B2)

Hyperbolic functions with df = 3 (Equation
B3) and df = 2 (Equation B4), similar to
Herrnstein’s (1970) model:

F=c+|[(d—¢)R]/(1/k+R), (B3)

F=c+[dR)/(1/k+R). (B4)
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Exponential functions with df = 3 (Equation
B5) and df = 2 (Equation B6), and a logistic
exponential function with df = 3 (Equation
B7), which were extensively used by Hull
(1943, 1951, 1952):

F=(c—d) exp(—kR)+d, (Bb)
F=d(1— exp(—kR)), (B6)
F=d/[1+(d/c—1)-exp(—kR)]. (B7)

There were also five reducing component
functions, transformed from Equations B3 to
B7. The increasing hyperbolic, exponential, or
logistic functions have their initial values
smaller that the limiting values (¢ < d). To
transform a hyperbolic, exponential, or logis-
tic function into a decreasing one, it is enough
to choose the initial values of the function to
be greater than their limiting values (¢ > d).
The initial values for the reducing-component
functions were set to 1, which decreased their
degrees of freedom by 1. The following
functions were used:

Hyperbolic functions with df = 2 (Equation
B8) and df = 1 (Equation B9):

F=1+[(d—1)R]/[(1/k+R)| and  (B8)

F=1-R/(1/k+R), (B9)

Exponential functions with df = 2 (Equation
B10) and df = 1 (Equation B11) and a logistic
exponential function with df = 2 (Equation

B12):

F=(1—d)exp(—kR)+d, (B10)
F=exp(—kR) and (B11)
F=d/[1+(d—1)-exp(—kR)]. (B12)
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Table B1

Accuracy of 35 componentfunctions models of residence time (Equations 28 and 29) as all
possible combinations of seven enhancing-component functions (see Appendix B, Equations B1
to B7) and five reducing-component functions (see Appendix B, Equations B8 to B12). Power,
Hyp, Exp, and Log are power, hyperbolic, exponential, and logistic component functions. df in
Columns 2 and 4 are for component functions; dfin Column 5 are for the whole model. Other
abbreviations are as in Appendix A, Table Al. Models are ordered by values of AICc. The data
were from Alsop and Elliffe (1988) and Elliffe and Alsop (1996).

Component-functions AlCc BIC VAC
Enhancing df  Reducing df df  Value 4; Rank  Value 4; Rank Mean SEM
Power 3 Hyp 1 6 —3158 0 1 —2844 0 1 87 1
Exp 3 Hyp 1 6 —3142 16 2 —2828 16 2 86 1
Hyp 3 Hyp 1 6 —3140 18 3 —2825 18 3 86 1
Power 3 Hyp 2 7 —3138 20 4 —2775 69 5 87 1
Exp 3 Hyp 2 7 —3133 26 5 —2769 74 6 87 1
Hyp 3 Hyp 2 7 —3132 26 6 —2769 75 7 87 1
Hyp 3 Log 2 7 —3128 30 7 —2764 79 8 87 1
Power 3 Log 2 7 —3118 40 8 —2754 89 9 87 1
Exp 3 Log 2 7 —3091 68 9 —2727 117 12 86 1
Power 2 Hyp 1 5 —3076 83 10 —2811 32 4 85 2
Power 2 Hyp 2 6 —3061 97 11 —2746 97 10 85 2
Log 3 Hyp 2 7 —3048 110 12 —2685 159 15 86 1
Log 3 Hyp 1 6 —3047 112 13 —2732 112 11 85 1
Power 2 Log 2 6 —3027 131 14 —2713 131 13 84 2
Hyp 2 Hyp 1 5 —2959 199 15 —2695 149 14 82 2
Exp 2 Hyp 1 5 —2940 218 16 —2676 168 16 81 2
Hyp 2 Hyp 2 6 —2932 226 17 —2618 226 17 82 2
Exp 2 Hyp 2 6 —2914 245 18 —2599 245 18 81 2
Power 3 Exp 2 7 —2898 260 19 —2535 309 19 83 1
Log 3 Log 2 7 —2866 292 20 —2503 341 22 82 1
Hyp 3 Exp 2 7 —2863 295 21 —2500 344 23 82 2
Exp 3 Exp 2 7 —2862 296 22 —2499 345 24 82 2
Log 3 Exp 2 7 —2851 307 23 —2488 356 25 82 1
Hyp 2 Log 2 6 —2830 328 24 —2515 328 20 79 3
Power 2 Exp 2 6 —2825 333 25 —2511 333 21 80 2
Exp 2 Log 2 6 —2750 409 26 —2435 409 26 76 3
Hyp 2 Exp 2 6 —2694 464 27 —2379 464 28 76 2
Power 3 Exp 1 6 —2666 492 28 —2352 492 29 76 2
Power 2 Exp 1 5 —2657 501 29 —2393 451 27 74 2
Exp 3 Exp 1 6 —2646 512 30 —2332 512 31 75 2
Log 3 Exp 1 6 —2642 516 31 —2328 516 32 75 2
Hyp 3 Exp 1 6 —2633 525 32 —2319 525 33 75 2
Hyp 2 Exp 1 5 —2599 560 33 —2334 510 30 72 2
Exp 2 Exp 2 6 —2598 561 34 —2283 561 35 72 3
Exp 2 Exp 1 5 —2573 586 35 —2308 536 34 71 3
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Table B2
Parameter values for the best component-functions model (Equations 30 and 31). The number
of data points in each of the 12 fits was between 58 and 64. F,,,, and A are initial and scaling
values of the enhancing function, k,,, and k,,, are enhancing and reducing reinforcer constants,
T, is the residence time constant, and b is a reinforcer bias. VAC is percentage of variance
accounted for.
Model parameters
Fonno A Ryea Koni, 1, log b VAC
Arithmetic schedule (Alsop & Elliffe, 1988)
Pigeon 131 24 113 22 0.58 2.95 —0.09 83
132 28 32 29 1.56 4.18 0.04 84
133 65 154 83 0.96 4.49 —0.12 84
134 128764 948056 707277 1.26 4.06 —0.08 87
135 33 59 31 0.92 4.03 —-0.13 84
136 113 455 273 1.57 5.38 —0.08 81
Mean = SEM 21505 158145 117953 1.143 4.18 —0.08 84
Median 21452 157982 117865 0.161 0.32 0.02 1
49 134 57 1.114 4.12 —0.08 84
Exponential schedule (Elliffe & Alsop, 1996)
Pigeon 131 19 651 65 0.71 7.26 —0.20 88
132 61 61 26 1.20 5.88 0.08 90
133 0 230 37 0.64 5.90 —0.31 84
134 0 8945 2021 1.00 5.74 —0.15 94
135 5 122 15 0.68 6.35 —0.01 90
136 50 380 88 0.94 7.51 —0.06 94
Mean = SEM 23 1732 375 0.861 6.44 —0.11 90
Median 11 1445 329 0.089 0.31 0.06 1
12 305 51 0.823 6.12 —0.10 90




